Exercícios passados em sala no dia 14/05.
Transforme as frações em decimais e vice-versa:
a) \(\dfrac{3}{5} = 0,6\)
b) \(3,14 = \dfrac{314}{100} = \dfrac{157}{50}\)
c) \(0,144 = \dfrac{144}{1000} = \dfrac{18}{125}\)
d) \(-\dfrac{5}{8} = -0,625\)
Resolva
\[ \begin{array}{c} -3^{2} - \dfrac{1}{2} \div \left( - \dfrac{1}{4} \right)\\ -9 - \dfrac{1}{2} \div \left( - \dfrac{1}{4} \right) \\ -9 - \dfrac{1}{2} \times \left( - \dfrac{4}{1} \right) \\ -9 + \dfrac{4}{2}\\ -9 + 2\\ -7 \end{array}\]
Resolva e assinale a resposta:
\[ \begin{array}{c} \left[ \left( \dfrac{2}{3} \cdot \dfrac{9}{2} \right) + \left( - \dfrac{5}{7} \right) \cdot \left( -\dfrac{7}{5} \right) - \dfrac{5}{3} \cdot 6 \right] \\ \left[ \dfrac{18}{6} + \dfrac{35}{35} - \dfrac{30}{3} \right] \\ \left[ 3 + 1 - 10 \right] \\ -6 \end{array}\]
Calcule:
a) \(\left[ \left( \dfrac{1}{2} \right)^{2} + \left( \dfrac{2}{5} \right)^{3} \right] + \sqrt{\dfrac{1}{4}}\)
\[ \begin{array}{c} \left[ \dfrac{1}{4} + \dfrac{8}{125} \right] + \dfrac{1}{2}\\ \left[ \dfrac{125}{500} + \dfrac{32}{500} \right] + \dfrac{1}{2}\\ \dfrac{157}{500} + \dfrac{1}{2}\\ \dfrac{157}{500} + \dfrac{250}{500}\\ \dfrac{407}{500} \end{array}\]
b) \(\left[ \left( \dfrac{1}{2} \right)^{2} - \left( \dfrac{2}{5} \right)^{3} \right] + \sqrt{\dfrac{1}{4}}\)
\[ \begin{array}{c} \left[ \dfrac{1}{4} - \dfrac{8}{125} \right] + \dfrac{1}{2}\\ \left[ \dfrac{125}{500} - \dfrac{32}{500} \right] + \dfrac{1}{2}\\ \dfrac{93}{500} + \dfrac{1}{2}\\ \dfrac{93}{500} + \dfrac{250}{500}\\ \dfrac{343}{500} \end{array}\]